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Office hours survey
The staff is really concerned that some of you may be in
very different timezones.

They’d like to do their best to meet your needs by 
scheduling OH at times that work for you.

Please take their When2Meet survey.

https://www.when2meet.com/?9130395-c3GGK
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https://www.when2meet.com/?9130395-c3GGK


What to work on now
1. Please attempt the homework questions before lab on 

Friday.

2. Group declaration due on Friday.

3. If you don’t choose, we will put you in a randomly-
assigned group of 3 (which could include adding you to an 
existing group of 2.)

4. Read handout for Project 1 and try the autograder.

5. After today’s lecture, we’ll have covered all material to do 
the project.
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Recap: Synchronization
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Code

Stack (T1)

Heap

Stack (T2)

Stack (T3)

Avoid race conditions via mutual exclusion

Critical
sections



Too much milk
Problem definition:
1. Obama family wants to always have 

one jug of milk.
2. No room for two jugs of milk.
3. Whoever sees the fridge empty goes 

to buy milk.

Solution 0, no synchronization.
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Barack
if ( noMilk )

buy milk;

Michelle
if ( noMilk )

buy milk;

Problems?

Race condition!



Solution 3
Decide who buys milk when both 
leave notes at same time.

Barack hangs around to make sure 
job is done.

Barack’s “while ( noteMichelle )” 
prevents him from entering the 
critical section at the same time as 
Michelle.

6

Barack
leave noteBarack;
while ( noteMichelle )

;
if ( noMilk )

buy milk;
remove noteBarack;

Michelle
leave noteMichelle;
if ( no noteBarack )

if ( noMilk )
buy milk;

remove noteMichelle;



Analysis of solution 3
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Barack
leave noteBarack;
while ( noteMichelle )

;
if ( noMilk )

buy milk;
remove noteBarack

Michelle
leave noteMichelle;
if ( no noteBarack )

if ( noMilk )
buy milk;

remove noteMichelle;

Good
1. It works!
2. Relies on simple atomic 

operations.

Bad
1.Complicated and not obviously 

correct.
2.Asymmetric.
3.Not obvious how to scale to three 

people.
4.Barack consumes CPU time while 

waiting, called busy-waiting.
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lock( )
{
while ( true )

if ( lock is free )
{
acquire lock;
break;
}

}

unlock( )
{
release lock;
}

A lock prevents another thread 
from entering a critical section

“Lock fridge while checking 
milk status and shopping”

Two operations:

1. lock( ), wait until the lock is 
free, then acquire it.

2. unlock( ), release the lock.

Checking and acquiring must be 
atomic.

Why was the note solutions 1 and 
2 not a good lock?

Locks (mutexes)

Atomic



Solution using locks
Lock usage:
1. Initialized to free.
2. Acquire lock before 

entering critical section.
3. Release lock when done 

with critical section.
All synchronization involves 
waiting.
Threads can be running or 
blocked.
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Barack
milk.lock( );
if ( noMilk )

buy milk;
milk.unlock( );

Michelle
milk.lock( );
if ( noMilk )

buy milk;
milk.unlock( );



Efficiency
But this prevents 
Michelle from doing 
things while Barack is 
buying milk.

Can we minimize the 
time the lock is held?
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Barack
milk.lock( );
if ( noMilk )

buy milk;
milk.unlock( );

Michelle
milk.lock( );
if ( noMilk )

buy milk;
milk.unlock( );



Efficiency
Use a lock to 
protect posting 
or viewing of 
any notes.
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note.lock( );
if ( noNote )

{
leave note;
note.unlock( );
if ( noMilk )

buy milk;
note.lock( );
remove note;
}

note.unlock( );



Shared queue
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class Queue
{
private:

class Node
{
public:

int data;
Node *next;
Node( int data );
~Node( );

};

Node *first, *last;

public:
void Enqueue( int data );
int Dequeue( );
bool Empty( );
Queue( );
~Queue( );

};

Consider a simple 
queue.



Shared queue
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void Enqueue( int data )
{
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
}

int Dequeue( )
{
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
return d;
}

Let’s focus in on
the Enqueue and 
Dequeue routines.

What could go 
wrong if it’s multi-
threaded?



Shared queue
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void Enqueue( int data )
{
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
}

int Dequeue( )
{
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
return d;
}

Suppose there 
was only one node 
on the list and we 
did this.

We’d link the new
node to a just-
deleted node. 

A

B

C



Shared queue
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void Enqueue( int data )
{
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
}

int Dequeue( )
{
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
return d;
}

In this failure 
mode, we’d throw 
away the node 
enqueued by the 
other thread. 

AB
C



Shared queue
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void Enqueue( int data )
{
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
}

int Dequeue( )
{
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
return d;
}

Consider this 
pattern.

In this failure 
mode, we’d 
double-delete and 
one of the new 
nodes would be 
lost. 

AB

CD



Shared queue
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class Queue
{
private:

class Node
{
public:

int data;
Node *next;
Node( int data );
~Node( );

};
Node *first, *last;
Mutex lock;

public:
void Enqueue( int data );
int Dequeue( );
bool Empty( );
Queue( );
~Queue( );

};

We need for Enqueue
and Dequeue to be
thread-safe.

We ensure that by
adding a mutex
(mutual exclusion)
lock.

Any routine that wants
to inspect or change
the state should 
cooperate and first 
take the lock.



Shared queue
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void Enqueue( int data )
{
lock.Lock( );
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
lock.Unlock( );
}

int Dequeue( )
{
lock.Lock( );
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
lock.Unlock( );
return d;
}

The design pattern is that
we take the lock at the
very beginning of these
routines that contain 
critical sections and then 
release the lock at the 
end.



Shared queue
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void Enqueue( int data )
{
lock.Lock( );
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
lock.Unlock( );
}

int Dequeue( )
{
lock.Lock( );
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
lock.Unlock( );
return d;
}

Avoid the temptation to 
release and retake the 
same lock multiple times 
in the same routine as 
that often introduces new 
race conditions.

Always lock at the
beginning, release at the 
end.



Shared queue
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void Enqueue( int data )
{
lock.Lock( );
Node *n = new Node( data );
if ( last )

last = last->next = n;
else

first = last = n;
lock.Unlock( );
}

int Dequeue( )
{
lock.Lock( );
assert( first );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
lock.Unlock( );
return d;
}

Take the lock anytime 
you need for look at the 
object or change it.

Release the lock only 
when the representation 
invariant is maintained.



Fine-grained locking
What if you only want to read the data, not make 
any changes?
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Fine-grained locking
Instead of one lock for entire queue, use one lock per node

Why would you want to do this?

Lock each node as the queue is traversed, then release as soon 
as it’s safe, so other threads can also access the queue

1. lock A
2. get pointer to B
3. unlock A
4. lock B
5. read B
6. unlock B

What problems could occur?
How to fix?
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A B C NULL

Another thread could lock A and
dequeue all nodes



How to fix?
lock A
get pointer to B
lock B
unlock A
read B
unlock B

Hand-over-hand locking
Lock next node before releasing last node
Used in Project 4
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Ordering constraints
What if you wanted 
Dequeue() to wait 
without holding the 
lock if the queue is 
empty?

Would this work?
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int Dequeue( )
{
while ( !first )

;
lock.Lock( );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
lock.Unlock( );
return d;
}



Ordering constraints
Suppose we only look 
at first when we hold 
the lock.

Is the solution better?

Works (sort of) but
involves busy-waiting
that denies other the 
processor.
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int Dequeue( )
{
lock.Lock( );
while ( !first )

{
lock.Unlock( );
lock.Lock( );
}

lock.Lock( );
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if ( !first )

last = nullptr;
lock.Unlock( );
return d;
}



Avoiding busy waiting
Have waiting dequeuer 
put itself onto a waiting 
list and then go to 
sleep.

The enqueuer wakes 
up sleeping dequeuer.

What could go wrong?
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if (queue is empty )
{
add myself to waiting list;
go to sleep;
}



Avoiding busy waiting
What is wrong 
here?
Can’t go to sleep 
holding the lock.
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Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

add myself to waiting list
sleep

}
remove item from queue
unlock



We could give up 
the lock before 
sleeping, then 
retake when we 
wake up, but 
consider this 
failure mode.
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Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

unlock
add myself to the waiting list
sleep
lock

}
remove item from queue
unlock

A

B

C



Two types of synchronization
Mutual exclusion

Ensures that only one thread is in critical section
“Not at the same time”
lock/unlock

Ordering constraints
One thread waits for another to do something
“Before after”
E.g., dequeuer must wait for enqueuer to add 
something to queue
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Locks

Condition variables



Condition variables
Need a way to go to 
sleep, consuming no 
resource while waiting 
for a condition.

But we can’t lose any
races, so part of it has 
to be atomic.

We do this with a
condition variable.
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Wait( lock )
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}



Condition variables
Each condition 
variable has a list of 
waiting threads.

They’re “waiting on
the condition” 
meaning they’re 
waiting for whatever 
condition you decide 
to associate with that 
condition variable, 
e.g., queue is empty, 
queue is full, or 
whatever.
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Wait( lock )
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}



Condition variables
You always use a
condition variable in
combination with a 
lock,  releasing and 
then retaking the lock 
inside the condition 
variable’s wait 
operation. 
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Wait( lock )
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}



Condition variables
Since you’re giving up
the lock, you must 
guarantee that all the 
representation 
invariants of your 
datastructures have 
been restored. 
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Wait( lock )
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}



Condition variables interface
wait( mutex )

Atomically release lock, add thread to waiting list, sleep.

Thread must hold the lock when calling wait( ).

Must re-establish invariants before calling wait( ).

signal( )

Wake up one thread waiting on this condition variable.

broadcast( )

Wake up all threads waiting on this condition variable.

If no thread is waiting, signal and broadcast do nothing.

34



Avoiding busy waiting
So, let’s rewrite 
these sections with 
a condition 
variable.
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Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

add myself to waiting list
sleep

}
remove item from queue
unlock



We could give up 
the lock before 
sleeping, then 
retake when we 
wake up.

What is wrong with
this code?

Another thread
might beat us to it.
So must always
recheck the
condition.
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Enqueue()
lock
add new item to tail of queue
cv.signal( lock )
unlock

Dequeue()
lock
if ( queue is empty )

cv.wait( lock )
remove item from queue
unlock
return the removed item



To solve the race 
condition you must 
always, always 
check that the 
condition you 
hoped for is 
satisfied when you 
wake up by using 
a loop, not an if.

Another thread
might beat us to it.
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Enqueue()
lock
add new item to tail of queue
cv.signal( lock )
unlock

Dequeue()
lock
while ( queue is empty )

cv.wait( lock )
remove item from queue
unlock
return the removed item



Condition 
variables eliminate 
busy waiting and 
they free up the 
resource by 
releasing the lock 
while you’re 
waiting but 
promise you’ll get 
the lock back when 
wait returns.
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Enqueue()
lock
add new item to tail of queue
cv.signal( lock )
unlock

Dequeue()
lock
while ( queue is empty )

cv.wait( lock )
remove item from queue
unlock
return the removed item



Spurious wakeups
There’s clearly a race between when a cv is signaled and 
when you wake and another thread simply beating you to
it. That’s often called a “stolen wakeup”.

But many definitions of cv’s also allow wait to return for 
no reason whatsoever, even if never signaled, to allow 
implementation flexibility in dealing with error conditions 
and races inside the OS.  That’s called a “spurious 
wakeup”.

The argument is you were going to have to check the 
condition anyway.
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Monitors
Combine two types of synchronization

Locks for mutual exclusion
Condition variables for ordering constraints

A monitor = a lock + the condition variables 
associated with that lock
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Mesa vs. Hoare monitors
Mesa monitors

When waiter is woken, it must contend for the lock
So it must re-check the condition it was waiting for

What would be required to ensure condition is met 
when waiter starts running again?
Hoare monitors

Special priority to woken-up waiter
Signaling thread immediately gives up lock
Signaling thread reacquires lock after waiter unlocks
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We (and most OSes) use Mesa monitors

Waiter is solely responsible for ensuring condition is met



Programming with monitors in P1
Design

List the shared data needed for the problem
Assign locks to each group of shared data

Tradeoff between complexity and concurrency
List the waiting conditions for the problem
Assign condition variable to each condition

Implementation
Add lock/unlock around all accesses to shared data

Remember invariant
Add while (!cond) { wait } where condition must hold
Add signal/broadcast after making condition true
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You use a lock and a 
condition variable together.

When you do something
that creates a condition a 
thread might be interested 
in, you signal it.

Other threads can then wait 
for that condition.  But they 
must always check that the 
condition is satisfied when 
they wake.
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Enqueue()
lock
add new item to tail of queue
cv.signal( lock )
unlock

Dequeue()
lock
while ( queue is empty )

cv.wait( lock )
remove item from queue
unlock
return the removed item

Typical monitor code



Project 1

Now, you should know everything you need to 
know to do project 1

Due soon. May 27.
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