
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 4: Lock and cv

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Office hours survey
The staff is really concerned that some of you may be in
very different timezones.

They’d like to do their best to meet your needs by
scheduling OH at times that work for you.

Please take their When2Meet survey.

https://www.when2meet.com/?9130395-c3GGK

2

https://www.when2meet.com/?9130395-c3GGK

What to work on now
1. Please attempt the homework questions before lab on

Friday.

2. Group declaration due on Friday.

3. If you don’t choose, we will put you in a randomly-
assigned group of 3 (which could include adding you to an
existing group of 2.)

4. Read handout for Project 1 and try the autograder.

5. After today’s lecture, we’ll have covered all material to do
the project.

3

Recap: Synchronization

4

Code

Stack (T1)

Heap

Stack (T2)

Stack (T3)

Avoid race conditions via mutual exclusion

Critical
sections

Too much milk
Problem definition:
1. Obama family wants to always have

one jug of milk.
2. No room for two jugs of milk.
3. Whoever sees the fridge empty goes

to buy milk.

Solution 0, no synchronization.

5

Barack
if (noMilk)

buy milk;

Michelle
if (noMilk)

buy milk;

Problems?

Race condition!

Solution 3
Decide who buys milk when both
leave notes at same time.

Barack hangs around to make sure
job is done.

Barack’s “while (noteMichelle)”
prevents him from entering the
critical section at the same time as
Michelle.

6

Barack
leave noteBarack;
while (noteMichelle)

;
if (noMilk)

buy milk;
remove noteBarack;

Michelle
leave noteMichelle;
if (no noteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

Analysis of solution 3

7

Barack
leave noteBarack;
while (noteMichelle)

;
if (noMilk)

buy milk;
remove noteBarack

Michelle
leave noteMichelle;
if (no noteBarack)

if (noMilk)
buy milk;

remove noteMichelle;

Good
1. It works!
2. Relies on simple atomic

operations.

Bad
1.Complicated and not obviously

correct.
2.Asymmetric.
3.Not obvious how to scale to three

people.
4.Barack consumes CPU time while

waiting, called busy-waiting.

8

lock()
{
while (true)

if (lock is free)
{
acquire lock;
break;
}

}

unlock()
{
release lock;
}

A lock prevents another thread
from entering a critical section

“Lock fridge while checking
milk status and shopping”

Two operations:

1. lock(), wait until the lock is
free, then acquire it.

2. unlock(), release the lock.

Checking and acquiring must be
atomic.

Why was the note solutions 1 and
2 not a good lock?

Locks (mutexes)

Atomic

Solution using locks
Lock usage:
1. Initialized to free.
2. Acquire lock before

entering critical section.
3. Release lock when done

with critical section.
All synchronization involves
waiting.
Threads can be running or
blocked.

9

Barack
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Michelle
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Efficiency
But this prevents
Michelle from doing
things while Barack is
buying milk.

Can we minimize the
time the lock is held?

10

Barack
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Michelle
milk.lock();
if (noMilk)

buy milk;
milk.unlock();

Efficiency
Use a lock to
protect posting
or viewing of
any notes.

11

note.lock();
if (noNote)

{
leave note;
note.unlock();
if (noMilk)

buy milk;
note.lock();
remove note;
}

note.unlock();

Shared queue

12

class Queue
{
private:

class Node
{
public:

int data;
Node *next;
Node(int data);
~Node();

};

Node *first, *last;

public:
void Enqueue(int data);
int Dequeue();
bool Empty();
Queue();
~Queue();

};

Consider a simple
queue.

Shared queue

13

void Enqueue(int data)
{
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
}

int Dequeue()
{
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
return d;
}

Let’s focus in on
the Enqueue and
Dequeue routines.

What could go
wrong if it’s multi-
threaded?

Shared queue

14

void Enqueue(int data)
{
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
}

int Dequeue()
{
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
return d;
}

Suppose there
was only one node
on the list and we
did this.

We’d link the new
node to a just-
deleted node.

A

B

C

Shared queue

15

void Enqueue(int data)
{
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
}

int Dequeue()
{
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
return d;
}

In this failure
mode, we’d throw
away the node
enqueued by the
other thread.

AB
C

Shared queue

16

void Enqueue(int data)
{
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
}

int Dequeue()
{
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
return d;
}

Consider this
pattern.

In this failure
mode, we’d
double-delete and
one of the new
nodes would be
lost.

AB

CD

Shared queue

17

class Queue
{
private:

class Node
{
public:

int data;
Node *next;
Node(int data);
~Node();

};
Node *first, *last;
Mutex lock;

public:
void Enqueue(int data);
int Dequeue();
bool Empty();
Queue();
~Queue();

};

We need for Enqueue
and Dequeue to be
thread-safe.

We ensure that by
adding a mutex
(mutual exclusion)
lock.

Any routine that wants
to inspect or change
the state should
cooperate and first
take the lock.

Shared queue

18

void Enqueue(int data)
{
lock.Lock();
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
lock.Unlock();
}

int Dequeue()
{
lock.Lock();
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
lock.Unlock();
return d;
}

The design pattern is that
we take the lock at the
very beginning of these
routines that contain
critical sections and then
release the lock at the
end.

Shared queue

19

void Enqueue(int data)
{
lock.Lock();
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
lock.Unlock();
}

int Dequeue()
{
lock.Lock();
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
lock.Unlock();
return d;
}

Avoid the temptation to
release and retake the
same lock multiple times
in the same routine as
that often introduces new
race conditions.

Always lock at the
beginning, release at the
end.

Shared queue

20

void Enqueue(int data)
{
lock.Lock();
Node *n = new Node(data);
if (last)

last = last->next = n;
else

first = last = n;
lock.Unlock();
}

int Dequeue()
{
lock.Lock();
assert(first);
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
lock.Unlock();
return d;
}

Take the lock anytime
you need for look at the
object or change it.

Release the lock only
when the representation
invariant is maintained.

Fine-grained locking
What if you only want to read the data, not make
any changes?

21

Fine-grained locking
Instead of one lock for entire queue, use one lock per node

Why would you want to do this?

Lock each node as the queue is traversed, then release as soon
as it’s safe, so other threads can also access the queue

1. lock A
2. get pointer to B
3. unlock A
4. lock B
5. read B
6. unlock B

What problems could occur?
How to fix?

22

A B C NULL

Another thread could lock A and
dequeue all nodes

How to fix?
lock A
get pointer to B
lock B
unlock A
read B
unlock B

Hand-over-hand locking
Lock next node before releasing last node
Used in Project 4

23

Ordering constraints
What if you wanted
Dequeue() to wait
without holding the
lock if the queue is
empty?

Would this work?

24

int Dequeue()
{
while (!first)

;
lock.Lock();
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
lock.Unlock();
return d;
}

Ordering constraints
Suppose we only look
at first when we hold
the lock.

Is the solution better?

Works (sort of) but
involves busy-waiting
that denies other the
processor.

25

int Dequeue()
{
lock.Lock();
while (!first)

{
lock.Unlock();
lock.Lock();
}

lock.Lock();
Node *p = first;
int d = first->data;
first = first->next;
delete p;
if (!first)

last = nullptr;
lock.Unlock();
return d;
}

Avoiding busy waiting
Have waiting dequeuer
put itself onto a waiting
list and then go to
sleep.

The enqueuer wakes
up sleeping dequeuer.

What could go wrong?

26

if (queue is empty)
{
add myself to waiting list;
go to sleep;
}

Avoiding busy waiting
What is wrong
here?
Can’t go to sleep
holding the lock.

27

Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

add myself to waiting list
sleep

}
remove item from queue
unlock

We could give up
the lock before
sleeping, then
retake when we
wake up, but
consider this
failure mode.

28

Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

unlock
add myself to the waiting list
sleep
lock

}
remove item from queue
unlock

A

B

C

Two types of synchronization
Mutual exclusion

Ensures that only one thread is in critical section
“Not at the same time”
lock/unlock

Ordering constraints
One thread waits for another to do something
“Before after”
E.g., dequeuer must wait for enqueuer to add
something to queue

29

Locks

Condition variables

Condition variables
Need a way to go to
sleep, consuming no
resource while waiting
for a condition.

But we can’t lose any
races, so part of it has
to be atomic.

We do this with a
condition variable.

30

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
Each condition
variable has a list of
waiting threads.

They’re “waiting on
the condition”
meaning they’re
waiting for whatever
condition you decide
to associate with that
condition variable,
e.g., queue is empty,
queue is full, or
whatever.

31

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
You always use a
condition variable in
combination with a
lock, releasing and
then retaking the lock
inside the condition
variable’s wait
operation.

32

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables
Since you’re giving up
the lock, you must
guarantee that all the
representation
invariants of your
datastructures have
been restored.

33

Wait(lock)
{
release the lock;
put the thread on the waiting list;
sleep;
wake when condition satisfied;
retake the lock;
}

Condition variables interface
wait(mutex)

Atomically release lock, add thread to waiting list, sleep.

Thread must hold the lock when calling wait().

Must re-establish invariants before calling wait().

signal()

Wake up one thread waiting on this condition variable.

broadcast()

Wake up all threads waiting on this condition variable.

If no thread is waiting, signal and broadcast do nothing.

34

Avoiding busy waiting
So, let’s rewrite
these sections with
a condition
variable.

35

Enqueue()
lock
add new item to tail of queue
if (Dequeuer is waiting) {

take waiting dequeuer off waiting list
wake up dequeuer

}
unlock

Dequeue()
lock
if (queue is empty) {

add myself to waiting list
sleep

}
remove item from queue
unlock

We could give up
the lock before
sleeping, then
retake when we
wake up.

What is wrong with
this code?

Another thread
might beat us to it.
So must always
recheck the
condition.

36

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
if (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

To solve the race
condition you must
always, always
check that the
condition you
hoped for is
satisfied when you
wake up by using
a loop, not an if.

Another thread
might beat us to it.

37

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Condition
variables eliminate
busy waiting and
they free up the
resource by
releasing the lock
while you’re
waiting but
promise you’ll get
the lock back when
wait returns.

38

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Spurious wakeups
There’s clearly a race between when a cv is signaled and
when you wake and another thread simply beating you to
it. That’s often called a “stolen wakeup”.

But many definitions of cv’s also allow wait to return for
no reason whatsoever, even if never signaled, to allow
implementation flexibility in dealing with error conditions
and races inside the OS. That’s called a “spurious
wakeup”.

The argument is you were going to have to check the
condition anyway.

39

Monitors
Combine two types of synchronization

Locks for mutual exclusion
Condition variables for ordering constraints

A monitor = a lock + the condition variables
associated with that lock

40

Mesa vs. Hoare monitors
Mesa monitors

When waiter is woken, it must contend for the lock
So it must re-check the condition it was waiting for

What would be required to ensure condition is met
when waiter starts running again?
Hoare monitors

Special priority to woken-up waiter
Signaling thread immediately gives up lock
Signaling thread reacquires lock after waiter unlocks

41

We (and most OSes) use Mesa monitors

Waiter is solely responsible for ensuring condition is met

Programming with monitors in P1
Design

List the shared data needed for the problem
Assign locks to each group of shared data

Tradeoff between complexity and concurrency
List the waiting conditions for the problem
Assign condition variable to each condition

Implementation
Add lock/unlock around all accesses to shared data

Remember invariant
Add while (!cond) { wait } where condition must hold
Add signal/broadcast after making condition true

42

You use a lock and a
condition variable together.

When you do something
that creates a condition a
thread might be interested
in, you signal it.

Other threads can then wait
for that condition. But they
must always check that the
condition is satisfied when
they wake.

43

Enqueue()
lock
add new item to tail of queue
cv.signal(lock)
unlock

Dequeue()
lock
while (queue is empty)

cv.wait(lock)
remove item from queue
unlock
return the removed item

Typical monitor code

Project 1

Now, you should know everything you need to
know to do project 1

Due soon. May 27.

44

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 4: Lock and cv
	Office hours survey
	What to work on now
	Recap: Synchronization
	Too much milk
	Solution 3
	Analysis of solution 3
	Slide Number 8
	Solution using locks
	Efficiency
	Efficiency
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Shared queue
	Fine-grained locking
	Fine-grained locking
	How to fix?
	Ordering constraints
	Ordering constraints
	Avoiding busy waiting
	Avoiding busy waiting
	Slide Number 28
	Two types of synchronization
	Condition variables
	Condition variables
	Condition variables
	Condition variables
	Condition variables interface
	Avoiding busy waiting
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Spurious wakeups
	Monitors
	Mesa vs. Hoare monitors
	Programming with monitors in P1
	Typical monitor code
	Project 1

